Pigment-Based Chemotaxonomy - A Quick Alternative to Determine Algal Assemblages in Large Shallow Eutrophic Lake?

نویسندگان

  • Marju Tamm
  • René Freiberg
  • Ilmar Tõnno
  • Peeter Nõges
  • Tiina Nõges
چکیده

Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal changes in icefish diel feeding patterns in Lake Chaohu, a large shallow eutrophic lake of China

Seasonal changes in the diel feeding patterns of the zooplanktivorous icefish (Neosalanx taihuensis), which is an endemic species of China, were studied in the large, shallow eutrophic Lake Chaohu of China during the autumn of 2002 and summer of 2003. The results of the diel feeding rhythm indicate that icefish is a visual particulate feeder. There were large differences in diet composition and...

متن کامل

Seasonal changes in icefish diel feeding patterns in Lake Chaohu, a large shallow eutrophic lake of China

Seasonal changes in the diel feeding patterns of the zooplanktivorous icefish (Neosalanx taihuensis), which is an endemic species of China, were studied in the large, shallow eutrophic Lake Chaohu of China during the autumn of 2002 and summer of 2003. The results of the diel feeding rhythm indicate that icefish is a visual particulate feeder. There were large differences in diet composition and...

متن کامل

Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake.

Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops k...

متن کامل

Nitrate Bioremoval by Phytotechnology using Utricularia aurea Collected from Eutrophic Lake of Theerthamkara, Kerala, India

The aim of this study was to compare the selected aquatic plants ability to remove nitrate from wastewater. Excess of these nutrients in water can directly affect human health (methemoglobinaemia) or indirectly through the products of secondary pollution include eutrophication. Negative impact of nutrients excess in surface water often causes the destruction of water ecosystems, and therefore, ...

متن کامل

Nitrate Bioremoval by Phytotechnology using Utricularia aurea Collected from Eutrophic Lake of Theerthamkara, Kerala, India

The aim of this study was to compare the selected aquatic plants ability to remove nitrate from wastewater. Excess of these nutrients in water can directly affect human health (methemoglobinaemia) or indirectly through the products of secondary pollution include eutrophication. Negative impact of nutrients excess in surface water often causes the destruction of water ecosystems, and therefore, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015